

METEOR SERIES DIGITAL FREOUENCY COUNTERS

METEOR 100

METEOR 600
METEOR 1000

Service Manual

METEOR SERIES FREQUENCY COUNTERS SERVICE MANUAL

INDEX
INTRODUCTION 2
SPECIFICATION 3
FUNCTIONAL DESCRIPTION 4
CIRCUIT DESCRIPTION 5
CALIBRATION 7
TROUBLESHOOTING GUIDE 8
PARTS LIST 9
DIAGRAMS:
FUNCTIONAL BLOCK DIAGRAM 4
COMPONENT LAYOUT 12
MAINS AND BATTERY CONNECTIONS 13
600 MHz PREAMP/PRESCALER CIRCUIT 14
1 GHz PREAMP/PRESCALER CIRCUIT 15
MAIN CIRCUIT 17

1. INTRODUCTION

a) Handling

While the Meteor Counters have been designed to be rugged, severe shocks can be destructive and should be avoided. Suitable precautions against static should be taken as the unit contains CMOS components. Do not expose to radiant heat, including direct sunlight for prolonged periods, or high humidity including conditions conducive to the formation of ice. Remove batteries if storing for prolonged periods. If accidentally immersed, rinse in fresh water, dry as far as possible after removing batteries, then stand in a dry warm atmosphere $\left(40^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}\right)$ away from direct heat until dried.

b) Equipment

To check a Meteor 100 Frequency Counter, Signal Generators must be available covering the band 2 Hz to 100 MHz . In addition, generators covering the band 100 MHz to 600 MHz or 1 GHz (as appropriate) are required to check Meteor 600 and 1000 models. The output level of all generators must be adjustable by a calibrated control. It is helpful (though not essential) if the output impedance is 50Ω.

Frequency calibration requires a highly stable signal source of better than 1×10^{-7} error. Ideally an Off-Air Frequency Standard should be used. In the U.K. a Burns Frequency Standard SD-12 locked to Droitwich transmissions would be appropriate.

For routine servicing a 20 MHz bandwidth Oscilloscope, preferably dual beam, with a sensitivity of 5 mV must be available, equipped with $\times 10,10 \mathrm{M} \Omega$ input impedance probes. An accurate Multimeter, preferably digital, capable of measuring 20 V and 500 mA must be available.

The following sundry equipment may also be needed:

Screwdriver - pozidrive No. 2 point
Soldering iron \& solder.
Desoldering tool (desolder wick may damage p.c.b.). Insulated trimming tool (or suitable insulated screwdriver).
Small hand tools (pliers, cutters etc.)
Black Star Mains Adaptor or appropriate bench power supply (9 V 600 mA).
Set of 6 Nickel Cadmium cells, 'C' size, with a capacity of 1.2Ah or greater.
Through termination (50Ω or as appropriate for signal generator).
Appropriate BNC connecting leads (at least one with crocodile clips).
c) Dismantling
i) Remove instrument from packing.
ii) Remove knob from front panel by pulling from shaft. If it is necessary to apply leverage, be careful not to apply side thrust to the potentiometer spindle.
iii) Remove cells if fitted.
iv) Remove metal leg by pushing inwards on one side.
v) Unscrew the four recessed pozidrive screws set into the feet on the underside of the case.
vi) Gently separate the two case halves.
vii) Remove front panel assembly and desolder BNC sockets and braid (if necessary). When optional External Reference Oscillator facility is fitted the 2P.C.B. screws must be removed.

Disassembly is now complete. Reassembly is the reverse of disassembly.

METEOR SERIES 8-DIGIT FREQUENCY COUNTERS SPECIFICATIONS

2. FUNCTIONAL DESCRIPTION

10 MHz Range - the signal at input A is filtered if required and amplified. It is further amplified and the trigger threshold adjusted before being squared and fed to the main counter I.C. The signal is also fed to a decade prescaler, the output of which is not used on this range.

100 MHz Range - the signal path is similar to that for 10 MHz , but the output from the previously mentioned prescaler is selected by the schmitt buffer under control of the range selection circuitry. The trigger amplifier output is not used on this range.
$600 \mathrm{MHz} / 1 \mathrm{GHz}$ Range - for power economy, the preamplifer and trigger amplifier associated with input A are powered down when this range is selected.

Power is only applied to the B input preamplifier and prescalers when this range is selected. The signal at input B is fed through a limiting preamplifier to one of two prescalers. 600 MHz models use a decade prescaler, while 1 GHz models use cascade $\div 2$ and $\div 5$ prescalers. The output from whichever used is fed to another decade prescaler (common with the A input) and thence to the schmitt buffer and main counter I.C.

The main counter I.C. generates all the necessary timing logic and contains all the display storage and driving circuitry. External switches route control signals determining decimal point position and gate period.

METEOR SERIES FUNCTIONAL BLOCK DIAGRAM

3. CIRCUIT DESCRIPTION

Power Supply

The instrument operates from a stabilised supply which uses the band-gap diode D8 as a 2.45 V reference. D7 acts as an overvoltage capture diode when setting up the suppy with RV2. TR10 and TR11 form a long tailed pair differential amplifier feeding TR13 and TR12 current amplifier. When rechargeable cells are fitted, power is fed via D9. When a Mains Adaptor is used, trickle charging of the battery takes place by the constant current supply TR14, TR15 and associated components. D9 is reverse biased, overriding the battery supply. In the fast charge configuration, TR12 and TR13 form the pass element for a constant current source using R43 for current sensing and the Vbe of TR16 as a reference.

$10 \mathrm{MHz} / 100 \mathrm{MHz}$ Preamplifier

C1 and C3, R1 and R2, D1 and D2 form an input protection and clamp network, capable of withstanding short term connection to 240 V a.c. at $50-60 \mathrm{~Hz}$ (stress rating only). R69 and C2 form a switch selectable 50 KHz Low Pass Filter. TR1 and TR2 are emitter follower buffer amplifiers, biased from the collector of TR3, and bootstrapped from the emitter of TR2 to give very high input impedance. TR3 and TR4 form a longtailed pair voltage amplifier, the output being taken from the collector of TR4 to avoid collectorbase feedback limiting bandwidth. TR5 defines the working point, and D19 prevents TR3 from saturating with high input levels. TR6 is an emitter follower buffer and level shifter to ECL levels. From the emitter of TR6 the signal is fed to IC2, a ECL prescaler, and the base of TR7. TR7 and TR8 form a voltage amplifier, with TR9 as an output amplifier/CMOS buffer stage. Overall feedback is applied by R70 and R71 to define a gain of 30 . The working point of TR8, and hence the trigger level is set by RV1.

$600 \mathrm{MHz} / 1 \mathrm{GHz}$ preamplifier

C33 provides isolation for accidental mains voltage inputs, and R46 in conjunction with D11 and D12 provides some protection at high frequencies. C34 couples the signal to the base of TR18, a low-level current amplifier and phase-splitter. Antiphase signals are coupled by C37 and C38 to IC4, a monolithic voltage amplifier. The antiphase outputs are fed to TR19 and TR20, a longtailed pair providing further voltage amplification to a level adequate for ECL operation. The output is fed to the appropriate prescaler by C44 or C52.

Prescalers

The 1 GHz model has a $1 \mathrm{GHz} \div 2 \mathrm{ECL}$ prescaler, IC6, fed from C52, which in turn feeds IC7, a 600 MHz , $\div 5$ ECL prescaler. The 600 MHz model only uses one prescaler for this function, IC5, a $600 \mathrm{MHz} \div 10 \mathrm{ECL}$ device. These prescalers and preamplifiers have their supply switched on as required by the range switch S1. D4, D13 and D14 determine which signal is fed to the input of IC2, another $600 \mathrm{MHz} \div 10 \mathrm{ECL}$ prescaler, but this time offering a TTL compatible output. This is adequate to drive IC3, a high-speed CMOS schmitt trigger quad nand gate. S1 also selects between 10 MHz inputs and any other range. With most sinu-
soidal inputs the output from IC3 is a $1: 1$ mark-space ratio square wave suitable for driving IC1. C25, at the input to IC2, allows the internal biassing of IC2 to correct for the d.c. shift caused by D4, D13 or D14.

Main counter IC1

a) Input. The input on pin 28 is a CMOS structure capable of accepting 1:1 mark space ratio inputs up to typically 12 MHz , allowing some overrange capability.
b) Range selection. The internally generated decimal point is disabled by D17, and selected externally by the digit strobe routed to pin 13. As this is dependant on resolution, and hence gate time, S1B, S2B, S2C and S2D form a complex switching net selecting the appropriate digit. D15 prevents a latch-up condition during range selection.
c) Gate time selection. This is carried out by S2A selecting the appropriate digit strobe to drive pin 14.
d) Reset. Occurs automatically on power-up due to the action of C53 and R68 on pin 12. D18 prevents damage (due to stored charge in C53) when the unit is switched off.
e) Gate period. Pin 2 provides a measurement in progress signal which is buffered and inverted by R39, R41, R44 and TR17 to drive D10 with a constant current.
f) Display Common cathode Digits $0-7$ are directly driven by IC1, no limiting resistors being necessary. Matched high-efficiency displays are used, so to get even intensity the intensity code must be specified when ordering spares.
g) Indicators D3 replaces the decimal point of Digit 7 to indicate overflow but due to its high sensitivity C21 and R25 are necessary to avoid ghosting. D5 and D6 are not directly driven from IC1 but are switch selected with IC3 inputs to indicate the display scaie factor.
h) Oscillator XL1, R26, C22, C23 and C24 together with a CMOS inverter between pin 25 and 26 form a precision oscillator. R26 biases the inverter, while C22, C23 and C24 Icad and tune the crystal for 10 MHz operation. Note, for stability, only cold welded crystal types should be used for replacement, not soldered can.
i) External Reference Oscillator facility Pin 24 is an external oscillator input and when used an input protection circuit is employed. From PL4, C27 and R9 decouple d.c. and limit surge current to the protection diodes (D20, D21). These diodes prevent excursion more than 0.8 V beyond either rail. R8 limits input currents to about $1 / 2 \mathrm{~mA}$ under these
conditions, preventing destructive latch-up. D20 and D21 are a compromise between surge capacity and speed, and should not be substituted for other types. The external oscillator option is selected on IC1 by the inclusion of D16 and an appropriate switch.
j) Main Counter I.C. Pins 1, 13 and 14 on the main counter I.C. are the control, decimal point and range inputs respectively. These are selected by strobing with one or more of the display digit drive signals (active LOW). The effect of various connections is shown below:

Control	Display Effect/Comments
Input	Digit

Counter
I.C. pin 1 to: $D_{0} \quad$ External oscillator input enabled
$D_{1} \quad$ Selects 1 MHz reference clock option.
$\mathrm{D}_{2} \quad$ External decimal point enable. Activates pin 13.
$D_{3} \quad$ Blank display when hold input (pin 27) is high.
$D_{4} \quad$ Test mode, never used. Counter latches random display.
$\mathrm{D}_{7} \quad$ Display test. All segments lit. Overridden by D3.

Decimal Point input Counter	Display Digit	Effect/Comments
l.C. pin 13 to:	$D_{0}-D_{6}$	Lights corresponding decimal point(s).
	D_{7}	Lights overflow l.e.d. Disables overflow and blanking.

Range Display Effect/Comments
Input Digit

Counter
I.C. pin

14 to: $\quad D_{0} \quad$ Gate time 10 ms selected
D. Gate time 100 ms selected
$\mathrm{D}_{2} \quad$ Gate time 1 sec selected
$D_{3} \quad$ Gate time 10 sec selected

4. CALIBRATION

The Meteors are designed to require a minimum of calibration. Two adjustments only are required. For the first, Vcc, it is necessary to dismantle the case (but NOT the front panel) see Section 1c - Dismantling. When the case has been separated leave the printed circuit board assembly in the case lower. Attach a meter (6VDC minimum) between test pins P9 (lowest test point below gate time switch) ground, and P8 (lowest test point below range switch) - Vcc. The voltage measured should be $5.2 \mathrm{~V} \pm 0.05 \mathrm{~V}$. If incorrect, adjust RV2, the trimmer at the top of the front panel assembly, until within limits. This adjustment is normally only needed if power supply components have been changed.

The second adjustment, the crystal clock calibration, is required if crystal drift exceeds requirements. No dismantling is required for this, but as the metal trimmer is at Vcc potential it is ESSENTIAL that an insulated trimming tool is used. A Vcc short circuit to ground (via the front panel) will damage the power supply and regulation circuitry.

Normally, a minimum 5 minute warm-up period is required for the instrument to reach a stable operating temperature. Connect a frequency standard of known accuracy (0.1 ppm or better) to input ' A '. Typically a 10 MHz source would be used and the following description assumes this:

Set the front panel controls to filter out, power on, 10 MHz range, 0.1 sec gate, and adjust trigger level to obtain a stable reading. Set to 10.00000 ± 1 digit using the trimming capacitor accessible through the front panel. Select 1 sec gate and carefully trim for a reading between 9.999995 and 10.000004 . Typically an error of 0.2 ppm can be achieved, but the temperature during calibration should be noted for maximum accuracy.

5. TROUBLE SHOOTING AND FAULT LOCATION

It is worth checking all control settings before looking for a fault. Particular attention should be paid to the External Reference Oscillator switch, if fitted, the Trigger Level Control (very sensitive at low levels, and/or high frequencies) and the Low-Pass Filter switch.

Where no socket has been used for an integrated circuit, this is an intended part of the design and not an economy measure. Stray capacitance will degrade performance. To replace an unsocketed faulty I.C. it is recommended (to minimise risk of p.c.b. damage) that all the legs on the I.C. be cropped and removed individually.

Note that typical voltages are shown on the circuit diagrams. These apply in the absence of input signal and switches selected as shown. It is assumed that the $600 \mathrm{MHz} / 1 \mathrm{GHz}$ range is selected when testing these prescalers. The power supply voltages are independant of control settings, and are appropriate when a mains adaptor is in use.

Power Supply A wide variety of unrelated faults can occur if the wrong Vcc is present. If in doubt about any fault, ALWAYS check t'7at Vcc is within limits, and repair or recalibrate if necessary.

Prescalers and preamplifiers These do not normally give trouble. If signal is not being passed, check for presence of Vcc for the appropriate part of the circuitry, and confirm absence of evidence of user servicing (solder splashers, lifted or broken tracks etc.) before checking voltages round the circuit. The H.F. preamplifier and prescalers will work with reduced sensitivity with a 10 MHz input signal, and allowing the use of a low cost oscilloscope for signal tracing. A 10M $\Omega, 10: 1$ attenuator probe should be used for this.

Main Counter If only one digit lights up, but with a high intensity, suspect the crystal clock. Checking the frequency on pin 25 is quite likely to load the clock enough to stop oscillation. Pin 26 should give good results with a high impedance probe.

The display digit strobes are used for control of some counter I.C. functions. Serious leakage can occur and cause a variety of problems. The input thresholds on the main counter i.c. lie between 3.2 and 4.4 V so aggregate leakage over $4 \mu \mathrm{~A}$ can give trouble, which may appear as a ghosting digit or an extra decimal point.

The tracks in the region of the display are very fine, and track damage or solder shorts can easily occur. Careful inspection may be necessary if faults remain after servicing.

External Reference Oscillator Input There are few things that can go wrong here. The important point is to ensure adequate drive is available for this or the display will exhibit a bright digit zero as the main counter I.C. selects the external oscillator input, waits $5 \mu \mathrm{~s}$ (200 KHz minimum input frequency), then reverts to the internal clock. The remaining digits are correspondingly dimmer due to the increased cycle time. If in doubt, check that the signal level is adequate at the main counter I.C. input (pin 24) (CMOS levels $20 \%-80 \%$ of Vcc).

In general, note that excessively low input signals will give a reading which jitters, or no reading at all. The 600 MHz and 1 GHz prescalers self oscillate in the absence of an input, giving a false display typically in the region $600-700 \mathrm{MHz}$. This will not affect normal sensitivity, and actually enhances it near the (random) frequencies of oscillation. The self oscillation does NOT give a stable display in the absence of an input signal.

PARTS LIST					
CIRCUIT POSITION	DESCRIPTION	PART No.	CIRCUIT POSITION	description	PART No.
Semiconductors			Crystal		
IC1	ICM7215 DIPI	24-001	XL1	Crystal 10MHz	25-001
IC2	SP8680BDG	24-003	Inductor		
IC3	MC74HC132	24-008	L1	Inductor $1 \mathrm{\mu H}$	17-001
IC4	SL952 DP	24-006	L2	Inductor $1 \mathrm{\mu H}$	17-001
IC5	SP8630B DG	24-005	Capacitors		
IC6	SP8605B	24-004	C1	Ceramic 0.14 f 50 V	20-013
TR1	BC184	22-005	C2	Polyester 0.01uf 250 V	20-007
	BF240	22-004	C3	Ceramic 47pf 500V	20-006
TR2	BF199	22-003	C4	Tant. 4.7uf 6.3 V	20-001
TR4	BF199	22-003	C5	Ceramic 10nf 63 V	20-008
TR5	BC184	22-005	$\begin{aligned} & \text { C6 } \\ & \text { C7 } \end{aligned}$	Ceramic 10nf 63V Tant 47 4 f $4 V$	$20-008$ $20-002$
TR6	BF240	22-004	C8	Ceramic 10nf 63 V	20-008
TR7	2N3906	22-006	C9	Electrolytic $220 \mu \mathrm{f} 10 \mathrm{~V}$	20-014
TR8	2N3906	22-006	C10	Ceramic 0.14 f 50 V	20-013
TR9	PN2369	22-008	C11	Ceramic 10 nf 63 V	20.008
TR10	BC184	22-005	C12	Ceramic 10nf 63V	20-008
TR11	BC184	22-005	C13	Ceramic 0.1 1 f 50 V	20-013
TR12	BD437	22-002	C14	Ceramic 10nf 63 V	20-008
TR13	BC212A	22-001	C15	Electrolytic 100uf 6.3V	20-011
TR14	BC184	22-005	C16	Ceramic 0.1 1 f 50 V	20-013
TR15	BC184	22-005	C17	Ceramic 10nf 63 V	20-008
TR16	BC212A	22-001	C18	Electrolytic 47 4 f 6.3 V	20-012
TR17	BC212A	22-001	C19	Ceramic 0.1uf 50 V	20-013
TR18	BFR90	22-007	C20	Ceramic 47pf 100 V	20-017
TR19	BFR90	22-007	C21*	Ceramic disk 100 nf 12 V	20-004
TR20	BFR90	22-007	C22	Ceramic 39pf 100 V	20-009
D1	1N916	23-004	C23	Ceramic 3p9 100 V	20-010
D2	1N916	23-004	C24	Trimmer 5pf to 65pf	21-002
D3	Lamp L.E.D.	26-001	C25	Chip 10nf	20-003
D4	1N4148	23-005	C26	Ceramic $0.1 \mu \mathrm{f} 50 \mathrm{~V}$	20-013
D5	Lamp L.E.D.	26-001	C27	See listing for optional	
D6	Lamp L.E.D.	26-001		External Reference Oscillator	Facility
D7	BZY88 C3V3	23-002	C28	Electrolytic 100uf 25 V	20-005
D8	ZN404	23-001	C29*	Ceramic disk 100nf 12V	20-004
D9	1N4001	23-003	C30*	Ceramic disk 100 nf 12 V	20-004
D10	Lamp L.E.D.	26-001	C31*	Ceramic disk 100nf 12V	20-004
D11	1N916	23-004	C32	Electrolytic $100 \mu \mathrm{f} 25 \mathrm{~V}$	20-005
D12	1N916	23-004	C33	Ceramic 47pf 500V	20-006
D13	1 N 4148	23-005	C34	Chip 10nf	20-003
D14	1N4148	23-005	C35	Chip 10nf	20-003
D15	1N4148	23-005	C36	Chip 10nf	20-003
D16			C37	Chip 10nf	20-003
			C38	Chip 10nf	20-003
D17	1N4148	23-005	C39	Chip 10nf	20-003
D18	1N4148	23-005	C40	Chip 10nf	20-003
D19	1N916	23-004	C41	Chip 10nf	20-003
D20/D21	See listing for optional External Reference Oscillator Facility		C42	Chip 10nf	20-003
			C43	Chip 10nf	20-003
Digit 0 to Digit 7	Display L.E.D.	26-002	C44	Chip 10nf	20-003
			C45	Chip 10nf	20-003

[^0]

DESCRIPTION	PART
P.C.B.	30-001
Socket, Displays (80)*	14-006
Switch, 4P3W, slide (S1/S2/S3)	16-002
Switch, 2P2W, slide (S4)	16-001
Socket I.C. 28 pin D.I.L.	14-004
Socket, power input (PL3)	14-001
Heatsink	38-001
Washer, mica	13-004
Washer, insulating (2)	13-005
Screw, 6BA x 6mm Round Head** (for Heatsink)	13-006
Washer, 6BA	13-007
Nut 6BA	13-009
Washer lock 6BA	13-008
Socket, BNC with nut \& washer (PL1/PL2)	14-002
Tag BNC	14-003
Pins, terminal (P1-P9)***	14-005
Front panel printed 100 MHz	28-001
Front panel printed 600 MHz	28-002
Front panel printed 1GHz	28-003
Miscellaneous	
Case upper with inserts	27-001
Case lower drilled	27-002
Case expansion strip (2)	27-003
Foot A (2)	27-004
Foot B (2)	27-005
Pad foot (4)	27-009
Leg	27-008
Screw M3 x 70 (4)	13-003
Back panel inc. battery compartment	27-007
Lid, battery compartment	27-006
Knob, black	29-001
Cap, grey (white dot)	29-005
Cap, blue (white dot)	29-004
Cap, green (white dot)	29-003
Cap, red (white dot)	29-006
Label, power input	31-001
Label, battery	31-002
Battery terminal neg	14-007
Battery contact	14-008
Battery terminal pos	14-009
Battery insulator	15-001
Foam insert (battery compartment lid)	31-007
Foam support (P.C.B.) (4)	11-002
Screw, battery connection	13-002
Manual	31-003
Guarantee Card (UK)	31-009
Packing styrofoam (2)	31-004

METEOR SERIES 600MHz PREAMP/PRESCALER CIRCUIT

NOTE FIGURES IN BRACKETS INDICATE NOMINAL
TEST VOLTAGES FOR NO INPUT SIGNAL
METEOR SERIES 1GHz PREAMP/PRESCALER CIRCUIT

nOTE FIGURES in brackets indicate nominal test voltages

COMPONENT			HGGHEST USED			
INTEGCIPCUIT	1 C		7			
TRANSISTOF	TR		20			
DIODE	D		21			
DISPLAY	DGTI		7			
RESISTOR	R		72			
POIENTIMETER	RV		2			
CAPACITOR	C		56			
INDUCTOR	L		2			
SWITCH	SW		5			
PLUG/SOCKET	PL		4			
CONNECTINPIN	P		9			
TEST PAD.	TP		3			

METEOR SERIES MAIN CIRCUIT

[^0]: *To be changed to $20-020$ ceramic disk 100pf 50V

